环形腔中光线偏斜时的朗缪尔效应

廖复中

(中国计量科学研究院)

Langmuir flow effect in a ring cavity during the light deflection

Liao Fuzhong

(National Institute of Metrology)

Abstract

Langmuir flow effect in a D. C. discharged ring laser is one of the important factors causing zero drift. The employment of linear cavity tubes in the ring cavity is discussed.

众所周知, 直流放电式的环形激光器中 所存在的朗缪尔(Langmuir)效应是造成零 漂的重要因素之一。所谓朗缪尔流,实际上 是增益原子在管内压力梯度作用下所形成的 定向流动。为了基本上消除这一效应的影 响,一般环形激光器件均采取对称双阳极平 衡放电形式,而且一般认为将两臂电流的平 衡控制到一定精度之内,这一效应的影响即 可得到有效的控制甚至被消除。但是,这些一 般对此效应的讨论均假定光线严格通过毛细 管的轴线,而实际上,由于设计与调整精度的 关系,不仅一开始就不一定能调到上述理想 状态,而且随着器件及周围环境温度的变化, 还会引起腔的变形, 这都会引起光线的偏斜 或偏斜的变化。如何估算光线偏斜情况下朗 缪尔流效应所带来的零漂影响,无论在理论 上还是实际上均有其重要意义。本文仅就 环形腔中应用直腔增益管的形式予以讨

论

Y

论。

有关朗缪尔流效应的理论指出,在直流 放电的毛细管中指向阳极方向的朗缪尔流速 分布是^[2]:

$$V_L = V_{oL} \left[1 - \exp\left(\frac{r-a}{\lambda_+}\right) \right]$$
 (1)

其中, $V_{oL} \approx \frac{a^2}{8\eta} \frac{dP}{dx}$, *a* 为毛细管半径, λ_+ 为 离子的平均自由程, *r* 为径向座标。向阴极 方向的 Poisenille 反流速分布是:

$$V_P = V_{OP} \left[1 - \left(\frac{r}{a}\right)^2 \right] \tag{2}$$

其中, $V_{OP} = \frac{a^2}{4\eta} \frac{dP}{dx}$ 。于是有 $V_{OL} \approx \frac{1}{2} V_{OP}$, 又由于 $\lambda_+ \ll a$,因此除十分邻近管壁外,在毛 细管的大部份区域内均可认为近似有 $V_L = V_{OL}$,于是净流速可近似表为:

收稿日期: 1979年4月9日。

$$V_{n}(r) = V_{L}(r) - V_{P}(r)$$

$$\approx -V_{OP} \left[\frac{1}{2} - \left(\frac{r}{a}\right)^{2}\right] \qquad (3)$$

这就形成了如图1虚线所示的合成速度 分布曲线,即沿管壁附近流动指向阳极,在管 心附近则流动指向阴极。

以下讨论一条与毛细管轴线不相重合但 与之共面的光线所经历的光程上的平均流 速。假定在一段长 Lo 的毛细管中传播着的 倾斜光线为 MN (见图 2),在始末两端离轴 距离分别为 r₁、r₂,则沿光路的平均流速为:

$$\overline{V} = \frac{1}{L_0} \int_0^{L_0} V(r) dL \qquad (4)$$

为以V(L) 取代V(r), 引入 $r=r_1+$ $(r_2-r_1)\frac{L}{L_2}$, 于是(3)、(4)两式分别变为:

$$\begin{split} V_{n}(L) &\approx -V_{oP} \Big[\frac{1}{2} - \frac{1}{a^{2}} \\ &\times \Big(r_{1} + (r_{2} - r_{1}) \frac{L}{L_{0}} \Big)^{2} \Big] \quad (5) \end{split}$$

$$\overline{V} = \frac{1}{L_0} \int_0^{\infty} V(L) dL$$

= $-V_{OP} \left[\frac{1}{2} - \frac{1}{a^2} \left(r_1 r_2 + \frac{1}{3} (r_2 - r_1)^2 \right) \right]$
(6)

不难证明,(6)式虽然是从图2情形推导出来的,但也适用于光线与轴相交的情形(见图 3),只要把轴线下的距离取为负值即可。

如前所述,在实际应用的环形激光器中, 为了尽量减小朗缪尔效应,总是采取平衡放

电的形式,在这种情况下,净流速应该是两臂 平均流速之差,现就不同情形讨论如下:

① 光线与轴线重合时(见图 4a)

$$r_{\pm 1} = r_{\pm 2} = r_{\pm 1} = r_{\pm 2} =$$

 $\overline{V}_{n\pm} = \overline{V}_{n\pm} = -\frac{V_{OP}}{2}$

净流速 $\overline{V}_n = \overline{V}_{nz} - \overline{V}_{nz} = 0$

② 光线与轴线平行,间距为 r₀时(见图 4b)

$$r_{\pm 1} = r_{\pm 2} = r_{\pm 1} = r_{\pm 2} = r_0$$
$$\bar{V}_{n\pm} = \bar{V}_{n\pm} = -V_{OP} \left[\frac{1}{2} - \left(\frac{r_0}{a}\right)^2\right]$$

净流速 $\overline{V}_n = \overline{V}_{n\underline{z}} - \overline{V}_{n\underline{z}} = 0$,

③ 光线倾斜, 与轴线在中心相交时(见

. 2 .

图 4c),由于对称,两端距轴相等,绝对值设为 ro,此时

$$\begin{split} r_{\underline{k}1} &= -r_{\underline{k}2} = -r_0, \ r_{\underline{k}2} = r_{\underline{k}1} = 0\\ \overline{V}_{n\underline{k}} &= \overline{V}_{n\underline{k}} = -V_{OP} \Big[\frac{1}{2} - \frac{r_0^2}{3a^2} \Big] \end{split}$$

净流速 $\overline{V}_n = \overline{V}_{n\pm} - \overline{V}_{n\pm} = 0_o$

④ 光线倾斜,但不与轴线相交时(见图 4d)。设两端距轴分别为 r₁₀ 与 r₂₀,而中心
 处距轴显然应为 <u>r₁₀+r₂₀</u>,此时

$$\begin{split} r_{\pm 1} &= r_{10}, \ r_{\pm 2} = r_{\pm 1} = \frac{r_{10} + r_{20}}{2}, \ r_{\pm 2} = r_{20}, \\ \bar{V}_{n\pm} &= -V_{OP} \Big[\frac{1}{2} - \frac{1}{a^2} \Big(r_{10} \frac{r_{10} + r_{20}}{2} \\ &+ \frac{1}{3} \Big(\frac{r_{10} + r_{20}}{2} - r_{10} \Big)^2 \Big) \Big] \\ \bar{V}_{n\pm} &= -V_{OP} \Big[\frac{1}{2} - \frac{1}{a^2} \Big(\frac{r_{10} + r_{20}}{2} r_{20} \\ &+ \frac{1}{3} \Big(r_{20} - \frac{r_{10} + r_{20}}{2} \Big)^2 \Big) \Big] \end{split}$$

净流速:

$$\overline{V}_{n} = \overline{V}_{n\pm} - \overline{V}_{n\pm} = V_{OP} \left[\frac{r_{10}^2 - r_{20}^2}{2a^2} \right] \quad (7)$$

⑤ 光线倾斜, 与轴线相交, 但交点不在 中心处时(见图 4e)。设两端距轴分别为 $-r_{10}$ 与 r_{20} , 中心距轴可以证明应为 $\frac{r_{20}-r_{10}}{2}$, 此 时:

$$\begin{aligned} r_{\underline{k}1} &= -r_{10}, \ r_{\underline{k}2} = r_{\underline{k}1} = \frac{r_{20} - r_{10}}{2}, \ r_{\underline{k}2} = r_{20} \\ \bar{V}_{n\underline{k}} &= -V_{OP} \Big[\frac{1}{2} - \frac{1}{a^2} \Big(-r_{10} \frac{r_{20} - r_{10}}{2} \\ &+ \frac{1}{3} \Big(\frac{r_{20} - r_{10}}{2} + r_{10} \Big)^2 \Big) \Big] \end{aligned}$$

$$\begin{split} \overline{V}_{nt_{\rm f}} &= - V_{OP} \Big[\frac{1}{2} - \frac{1}{a^2} \Big(\frac{r_{20} - r_{10}}{2} r_{20} \\ &+ \frac{1}{3} \Big(r_{20} - \frac{r_{20} - r_{10}}{2} \Big)^2 \Big) \Big] \end{split}$$

净流速:

$$\bar{V}_{n} = \bar{V}_{n \not\equiv} - \bar{V}_{n \not\equiv} = V_{OP} \left[\frac{r_{10}^{2} - r_{20}^{2}}{2a^{2}} \right]$$

其结果与情形 ④ 中的公式(7)相同,可 见,不管倾斜光线与轴线相交与否,只要两端 距轴距离的绝对值不变,两臂抵销后所残余 的净流速也是不变的。

至于光线与轴线不共面时的情形,可以 证明(见附录)其净流速的表达式与共面时的 普遍表达式(7)式完全相同,至此,(7)式即成 为光线倾斜时计算净流速的普遍关系式。运 用上述结果,在下述算例中取最大偏离量为 毛细管半径的3/10。除 $|r_{10}| = |r_{20}|$ 净流速 =0情况外,对不同 r_{10} 、 r_{20} 的取值及直至频 率偏移量的计算结果列于表 1。

其中所用的公式及参量如下:

$$V_{oP} = \frac{a^2}{4\eta} \frac{dP}{dx}, \quad \frac{dP}{dx} = 4.3 \frac{Ei\sqrt{M}}{Pa^4}$$
$$\Delta f_L = 0.2 \frac{\Delta \nu_L}{\Delta \nu_D} \frac{1}{\lambda} |\overline{G}_{\pm} \overline{V}_{n\pm} - \overline{G}_{\pm} \overline{V}_{n\pm}|,$$
$$m \not \equiv \overline{G}_{\pm} = \overline{G}_{\pm} = \overline{G} \not \equiv$$

 $\Delta f_{L} = 0.2 \frac{\Delta \nu_{L}}{\Delta \nu_{D}} \frac{1}{\lambda} \overline{G} \overline{V}_{n}, \ (\overline{V}_{n} \not\equiv \dot{\Omega} \dot{X})_{o}$

a——毛细管内半径 (厘米) 0.08, η ——气 体粘滞系数 (泊) 2×10⁻⁴, E——电场强度 (伏/厘米) 30, i——放电电流(安培) 0.006, M——气体原子量 4.7, P-气压(达因/厘米²) 4020(=3托), λ ——波长(厘米) 0.633×10⁻⁴,

man inter and a second	and the second s				and the second states of the
序号	r ₁₀ . (a)	r ₂₀ (a)	$\frac{r_{10}^2 - r_{20}^2}{2a^2}$	$\overline{V}_{n} = V_{OP} \left[\frac{r_{10}^{2} - r_{20}^{2}}{2a^{2}} \right]$ (厘米/秒)	$\Delta f_L = 0.2 \frac{\Delta \nu_L}{\Delta \nu_D} \frac{1}{\lambda} G \overline{\nu}_n $ (\overline{k})
1	0.1	0	0.005	0.005×8.2=0.041	$33.6 \times 0.041 = 1.38$
2	0.2	0	0.02	0.164	5.5
3	0.3	0	0.045	0.368	12.4
4	0.2	0.1	0.015	0.122	4.1
5	0.3	0.1	0.04	0.327	11.0
6	0.3	0.2	0.025	0.205	6.9
I CONTRACTOR OF THE OWNER			and the second sec	the subscription of the second s	and a second second of the second

. 3 .

No.	r _{左1} (D)	r _{右2} (D)	$\overline{G}_{\underline{\pi}}/G(0)$	$\overline{G}_{\overline{H}}/G(0)$	V 走/VOP	$\overline{V}_{\overline{n}}/V_{OP}$	$\frac{ \overline{G}_{\underline{\pi}}\overline{V}_{\underline{\pi}} - \overline{G}_{\underline{\pi}}\overline{V}_{\underline{\pi}} }{G(0)V_{OP}}$	$\Delta f = 0.2 \frac{\Delta \nu_L}{\Delta \nu_D} \frac{1}{\lambda} \left \overline{G}_{\underline{k}} \overline{V}_{\underline{k}} - \overline{G}_{\underline{k}} \cdot \overline{V}_{\underline{k}} \right $
1	0	0.05	0.999	0.992	0.499	0.494	0.0086	$275.52 \times 0.0086 = 2.37$
2	0	0.1	0.995	0.967	0.497	0.477	0.0333	9.17
3	0	0.15	0.990	0.926	0.493	0.448	0.0728	20.06
4	0.05	0.1	0.989	0.956	0.484	0.469	0.0304	8.38
5	0.05	0.15	0.967	0.911	0.471	0.437	0.0631	17.39
6	0.05	-0.1	0.999	0.975	0.498	0.483	0.0264	7.27
7	0.05	-0.15	0.995	0.940	0.497	0.457	0.0641	17.66
8	0.1	0.15	0.972	0.894	0.449 .	0.424	0.0573	15.79
9	0.1	-0.15	0.997	0.969	0,489	0.464	0.0379	10.44

表2 光线与轴线共面时的结果

表 3 光线与轴线不共面时的结果

No.	r _{左1} (D)	r _{右2} (D)	φ	 <i>v</i> _左 / <i>V</i> _{OP}	▽ _右 /V _{OP}	G±/VoP	$\overline{G}_{\pi}/V_{OP}$	$\frac{ \overline{G}_{\underline{\star}}\overline{V}_{\underline{\star}} - \overline{G}_{\underline{\star}}\overline{V}_{\underline{\star}} }{G(0)V_{OP}}$	<i>∆f</i> (赫)	平均 <i>4f</i> (赫)
1	0.05	0.1	0°	0.484	0.469	0.989	0.956	0.030	$275.52 \times 0.03 = 8.27$	
2	0.05	0.1	22.5°	0.484	0.469	0.989	0.957	0.030	8.27	
3	0.05	0.1	45°	0.486	0.471	0.989	0.959	0.029	7.99	
4	0.05	0.1	90°	0.491	0.476	0.995	0.966	0.029	7.99	7.75
5	0.05	0.1	135°	0.495	0.481	0.999	0.972	0.027	7.44	
6	0.05	0.1	157.5°	0.497	0.482	0.996	0.973	0.026	7.16	10 A.
7	0.05	0.1	180°	0.484	0.469	0.999	0.975	0.026	7.16	
8	0.05	0.15	0°	0.477	0.437	0.967	0.911	0.063	17.36	
9	0.05	0.15	22.5°	0.477	0.437	0.968	0.913	0.063	17.36	
10	0.05	0.15	45°	0.480	0.440	0.975	0.918	0.063	17.63	
11	0.05	0.15	90°	0.487	0.447	0.983	0.928	0.064	17.63	17.55
12	0.05	0.15	135°	0.494	0.453	0.989	0.937	0.064	17.63	
13	0.05	0.15	157.5°	0.496	0.456	0.992	0.939	0.064	17.63	
14	0.05	0.15	180°	0.477	0.437	0.995	0.940	0.064	17.63	
15	0.1	0.15	0°	0.449	0.424	0.972	0.894	0.057	15.70	antine and
16	0.1	0.15	22.5°	0.419	0.394	0.979	0.904	0.054	14.88	
17	0.1	0.15	45°	0.456	0.431	0.974	0.915	0.050	13.78	
18	0.1	0.15	90°	0.467	0.442	0.990	0.933	0.050	13.78	13.30
19	0.1	0.15	135°	0.484	0.459	0.998	0.950	0.047	12.95	
20	0.1	0.15	157.5°	0.488	0.463	0.999	0.965	0.042	11.57	
21	0.1	0.15	180°	0.449	0.424	0.997	0.969	0.038	10.47	

 $\Delta \nu_L$ ——模间隔(赫)400×10⁶(L=750毫米), $\Delta \nu_D$ ——多普勒宽度(赫)1500×10⁶, \overline{G}_{tx} 、 \overline{G}_{ti} ——左右臂增益0.04, \overline{V}_{nt} , \overline{V}_{nt} ——左 右臂平均流速(厘米/秒), V_n ——净流速(厘 米/秒)。

必须指出:在上述计算中,由于偏轴量 较小,为了简化起见,忽略了增益沿径向的非 均匀分布,并假定了即使光线偏斜,两臂的增 益也相等,其实这与实际情况存在一定的差 异,为了得到更精确的结果,在如下的讨论中 再对增益沿径向的非均匀分布加以考虑。

气体激光的理论与实验表明,小功率 He-Ne激光器,当放电电流比较小,气压不 太高时,增益的径向分布可近似用零阶贝塞 尔函数描述,令D为毛细管直径,沿径向离 管轴r处的小信号增益可表示为^[3]:

$$G\left(\frac{r}{D}\right) = G(0)J_0\left(\frac{4.8}{D}r\right)$$

其中 Jo 为零阶贝塞尔函数。与前类似,当光 线偏斜时,沿传播光路的增益也为一平均值,

$$\overline{G} = \frac{1}{L_0} \int_0^{L_0} G\left(\frac{r}{D}\right) dI$$

仿照计算(4)式时所做的变换,并近似取 J。 级数展开的前三项,上式结果为:

$$\begin{split} \overline{G} &= G\left(0\right) \left\{ 1 + \left(\frac{r_1}{D}\right)^2 \left[8.29 \left(\frac{r_1}{D}\right)^2 - 5.76 \right] \right. \\ &+ \frac{2r_1(r_2 - r_1)}{D^2} \left[8.29 \left(\frac{r_1}{D}\right)^2 - 2.88 \right] \\ &+ \frac{2(r_2 - r_1)^2}{D^2} \left[8.29 \left(\frac{r_1}{D}\right)^2 - 0.96 \right] \\ &+ \frac{8.29r_1(r_2 - r_1)^3}{D^4} \\ &+ \frac{1.66(r_2 - r_1)^4}{D^4} \right\} \end{split}$$
(9)

与前述对速度的考虑类似,增益沿径向的非 均匀分布对朗缪尔流零漂的影响体现在沿光 路两臂平均增益差的存在。引用公式(6)与 (9)并假定光线在左右臂管端的离轴量分别 为 $r_{\pm 1}$ 、 $r_{\pm 2}$ 时(见图5,并有 $r_{\pm 2} = r_{\pm 1} = \frac{1}{2}$ ($r_{\pm 2} - r_{\pm 1}$)),光线与轴线共面时的左右臂平

均速度与增益 \overline{V}_{t} 、 \overline{V}_{t} 、 \overline{G}_{t} 、 \overline{G}_{t} 的公式即可 分别写出。由于在这些表达式中均不仅只有 r 的平方项(象(7)式那样),而且还有r 的一 次项出现,因此在以下的表格中对于r 具有 相同绝对值但符号不同的情形也分别列出予 以计算。

与附录的方法相类似可以导出,当光线 与轴线不共面时在毛细管管端投影面上,沿 x2-x1-段路程的平均增益为:

$$\begin{aligned} \overline{G}(x_1 x_2) &= G(0) \left\{ 1 + \left(\frac{h}{D}\right)^2 \\ &\times \left[8.29 \left(\frac{h}{D}\right)^2 - 5.76 \right] \\ &+ \frac{2}{3a^2} \left[8.29 \left(\frac{h}{D}\right)^2 - 2.88 \right] \\ &\times (x_2^2 + x_2 x_1 + x_1^2) \right\} \end{aligned}$$
(11)

对于各种 $r_{\pm 1}$, $r_{\pm 1}$ 组合的投影 夹角分别 取 0°、22.5°、45°、90°、135°、157.5°、180° 七种典型值加以计算,不难看出 0°与180° 实际上已属共面情形,其结果应与共面时的 相应结果一致,这一点从表 2 与表 3 的对照 上看是满足的,这就证明了采用不同途经积 分结果是等效的。利用(f-1)与(11)式 对 光 线与轴线不共面时所进行计算的最终结果列 于表 3。

几点讨论

即使在双臂平衡放电的环形激光器
 件中,光线偏斜时也会带来附加的朗缪尔零
 漂。

② 把表 2、表 3 同表 1 的结果相比较可 明显看出,在考虑了增益沿径向的非均匀分 布后,朗缪尔零漂对光线偏斜的敏感性增加 了,换言之,光线倾斜时所带来的朗缪尔零漂

• 5 •

值加大了。加大的倍数大约为不考虑增益非 均匀分布时的1.6~1.9倍左右。

③ 从表 3 可以看出,对于相同的 r_{±1}、 r_{t²}值,不同的投影夹角所得的结果相当接 近,换言之,对朗缪尔零漂影响最大的是光线 倾斜时在毛细管两端的离轴量之差,而不是 光线与轴线不共面的程度(ϕ 角不同)。因此, 如果不计及细节,则光线偏斜时对零漂的影 响大致可用共面时的计算结果(即表 2)来加 以描述。

附 录

光线与轴线不在一平面中的情况(见附图1),此 时光线 MN 与毛细管两端面 P、Q 的交点到轴线 OO' 的垂直距离 r_a 与 r_b 也不共面,而且 MN 上的每 一点到轴线的垂直距离彼此都不共面,它们的联结 构成一扭曲的空间曲面。因为气体流速分 布是以 OO' 轴旋转对称的,因此为计算方便计,在数学上可 将上述沿空间曲面边缘(A 至 B) 的积分简化成沿平 面上的一条曲线的积分,为此,必须首先将三维曲面 ABDC 展平,方法是或者以CD 为水平底线,在平面 上画出 AB 的轨迹(附图 2(a)),或者以 AB 为水平 底线画出 CD 的轨迹(附图 2(b)),不难看出两者是 等效的。在以下的推导中,为了方便,采用附图 2(b) 的办法展平求轨迹方程,但积分时仍采用附图 2(a) 的曲线。

展平的方法如下:

将 ABDC 曲面在管截面上投影构成 $\triangle AOB(见)$ 附图 3), 顶点 O 为轴线 OO' 的投影点, 底边 AB 为 空间线段 AB 的投影, $AO = r_a$, $BO = r_b$, AB 的中点

E 对应毛细管的左右分界处, AB上各点到圆心 O点的距离代表空间 AB 线段相应点至轴线 OO' 的垂 直距离,由此看来,所谓展平,只需以 AB 为水平底 线(横轴),给出以上述距离为各点纵座标的联线就 完成了。现将 $\triangle AOB$ 单独绘于附图 4, OF 设为底 面的高 (h), AB 上任一点 M 到 O 的距离显然满足:

 $(MO)^2 = (MF)^2 + (OF)^2$,

表为函数形式为 $y^2 = x^2 + h^2$,这是一双曲线方程,写成标准形式应为

$$\frac{h^2}{h^2} - \frac{x^2}{h^2} = 1 \tag{f-1}$$

如以 F 为直角座标系的原点,则双曲线 COD 即为所求的空间 CD 线段的展平轨迹。

求积分时将 CD 作为水平底线(见附图 5), E 为 其中点, 净流速等于 AOB 曲线分别在 CE 与 ED 两 段求平均后相减而得。

具体计算如下:已知值: r_a , r_b , $\angle \phi$ (且设 $r_b \ge r_a$)导出值:

$$\overline{CD} = (r_a^2 + r_b^2 - 2r_a r_b \cos \phi)^{1/2}$$
 (f-2)

$$h = \frac{r_a r_b \sin \phi}{(r^2 + r^2)^2 r_r r_a \cosh(1/2)}$$
(f-3)

$$\overline{CF} = (r_a^2 - h^2)^{1/2}, \ \overline{FD} = (r_b^2 - h^2)^{1/2}$$
 (f-4)

$$\overline{FE} = \frac{1}{2} \left(\overline{FD} + \overline{CF} \right)$$
 (f-5)

其中,当 $\phi \ge \phi_{\text{MR}} = \cos^{-1} \frac{r_a}{r_b}$ 时 \overline{CF} 取负值,

当
$$\phi \leqslant \phi_{\text{mgr}} = \cos^{-1} \frac{r_a}{r_b}$$
时 \overline{CF} 取正值。

- 计算值: 利用关系

 - 一段路程的平均流速为:

$$\overline{V}(x_1, x_2) = \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} V(x) dx$$

$$= -V_{oP} \left[\left(\frac{1}{2} - \frac{h^2}{a^2} \right) - \frac{1}{3a^2} \right] \times (x_2^2 + x_2 x_1 + x_1^2)$$
(f-6)

利用前述关系式及 $\overline{V}_{n\underline{x}} = \overline{V}(\overline{CF}, \overline{FE}), \overline{V}_{n\underline{x}} = V(\overline{FE}, \overline{FD})$ 经化简最后可求得: 冷流速: $\overline{V}_n = \frac{V_{OP}}{2a^2} [r_a^2 - r_b^2]$

结果形式与共面时的(7)式相同而与∠φ值无关。

参考文献

- F. Aronowitz; The Laser Gyro, Laser Applicatios, Vol. 1, 1971, 133~200.
- [2] T. J. Podgorski, F. Aronowitz; *IEEE J. Quant.* Electr., 1968, QE-4, 11~18.
- [3] G. Herziger, W. Holzapfel, W. Seelig; Zeitschrift für Physik, 1966, 189, 385~400.

简 讯

QX-1 型激光全息滴谱记录仪技术 鉴定会在上海召开

上海市激光技术研究所在南京大学气象系的协作下,研制的QX-1型激光全息滴谱记录仪于 1979年10月20日通过了技术鉴定。

该仪器以 Q 开关红宝石激光器为光源,最大输 出能量为 0.5 焦耳,脉冲宽度约 100 毫微秒,相干长 度不小于 5 厘米,可记录直径 5~100 微米的粒子。 由于该仪器采用了新颖的供电方式,因而结构紧凑, 体积小巧,重量轻,整机仅为 25 公斤。这种独特的 供电方式为脉冲激光器件的小型化提供了一条重要 途径。

QX-1 型激光全息滴谱记录仪主要用于记录快 速运动的气溶胶粒子,对粒子扰动小,取样快,形 象而且能给出粒子的大小和空间分布等信息。在云 雾物理、爆炸分散、燃油雾化、植保研究等许多方面 有着广泛的应用前景,也可用于记录诸如纤维等 细 小物体和作为一般脉冲激光光源来记录漫射物体的 全息图、干涉计量和流动显示等方面。

(上海市激光技术研究所 曲志敏)

. 7 .